Learning-induced plasticity in deep cerebellar nucleus.

نویسندگان

  • Tatsuya Ohyama
  • William L Nores
  • Javier F Medina
  • Frank A Riusech
  • Michael D Mauk
چکیده

Evidence that cerebellar learning involves more than one site of plasticity comes from, in part, pavlovian eyelid conditioning, where disconnecting the cerebellar cortex abolishes one component of learning, response timing, but spares the expression of abnormally timed short-latency responses (SLRs). Here, we provide evidence that SLRs unmasked by cerebellar cortex lesions are mediated by an associative form of learning-induced plasticity in the anterior interpositus nucleus (AIN) of the cerebellum. We used pharmacological inactivation and/or electrical microstimulation of various sites afferent and efferent to the AIN to systematically eliminate alternative candidate sites of plasticity upstream or downstream from this structure. Collectively, the results suggest that cerebellar learning is mediated in part by plasticity in target nuclei downstream of the cerebellar cortex. These data demonstrate an instance in which an aspect of associative learning, SLRs, can be used as an index of plasticity at a specific site in the brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulus generalization of conditioned eyelid responses produced without cerebellar cortex: implications for plasticity in the cerebellar nuclei.

In Pavlovian eyelid conditioning and adaptation of the vestibulo-ocular reflex, cerebellar cortex lesions fail to completely abolish previously acquired learning, indicating an additional site of plasticity in the deep cerebellar or vestibular nucleus. Three forms of plasticity are known to occur in the deep cerebellar nuclei: formation of new synapses, plasticity at existing synapses, and chan...

متن کامل

Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model

Deep cerebellar nuclei neurons receive both inhibitory (GABAergic) synaptic currents from Purkinje cells (within the cerebellar cortex) and excitatory (glutamatergic) synaptic currents from mossy fibers. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependen...

متن کامل

A New Locus for Synaptic Plasticity in Cerebellar Circuits

Experimental and computational analyses of cerebellar function indicate that excitatory synapses onto deep nucleus neurons are likely to be a critical site of plasticity during motor learning. In this issue of Neuron, Pugh and Raman report that unconventional stimulus protocols can drive synaptic plasticity in the deep cerebellar nuclei.

متن کامل

Latent acquisition of timed responses in cerebellar cortex.

Evidence indicates that rabbit eyelid conditioning is mediated by plasticity in the interpositus cerebellar nucleus and in cerebellar cortex. Although the relative contributions of these sites are not fully characterized, evidence suggests that plasticity in the cerebellar cortex influences conditioned response amplitude and timing, whereas plasticity in the interpositus nucleus is necessary or...

متن کامل

Cerebellar Learning

Since Marr's groundbreaking theory on the cerebellar cortex (Marr, 1969), the issue of cerebellar learning has been actively if not harmoniously investigated. Marr's theory was based on the equally seminal work of Eccles, Ito, and Szenthagotai (1967), which laid the foundations for providing a nearly complete circuit diagram of the cerebellum. The nearly 40 years of cerebellar research since ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 49  شماره 

صفحات  -

تاریخ انتشار 2006